Contribution of membrane elastic energy to rhodopsin function.
نویسندگان
چکیده
We considered the issue of whether shifts in the metarhodopsin I (MI)-metarhodopsin II (MII) equilibrium from lipid composition are fully explicable by differences in bilayer curvature elastic stress. A series of six lipids with known spontaneous radii of monolayer curvature and bending elastic moduli were added at increasing concentrations to the matrix lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the MI-MII equilibrium measured by flash photolysis followed by recording UV-vis spectra. The average area-per-lipid molecule and the membrane hydrophobic thickness were derived from measurements of the (2)H NMR order parameter profile of the palmitic acid chain in POPC. For the series of ethanolamines with different levels of headgroup methylation, shifts in the MI-MII equilibrium correlated with changes in membrane elastic properties as expressed by the product of spontaneous radius of monolayer curvature, bending elastic modulus, and lateral area per molecule. However, for the entire series of lipids, elastic energy explained the shifts only partially. Additional contributions correlated with the capability of the ethanolamine headgroups to engage in hydrogen bonding with the protein, independent of the state of ethanolamine methylation, with introduction of polyunsaturated sn-2 hydrocarbon chains, and with replacement of the palmitic acid sn-1 chains by oleic acid. The experiments point to the importance of interactions of rhodopsin with particular lipid species in the first layer of lipids surrounding the protein as well as to membrane elastic stress in the lipid-protein domain.
منابع مشابه
Modulation of rhodopsin function by properties of the membrane bilayer.
A prevalent model for the function of rhodopsin centers on the metarhodopsin I (MI) to metarhodopsin II (MII) conformational transition as the triggering event for the visual process. Flash photolysis techniques enable one to determine the [MII]/[MI] ratio for rhodopsin in various recombinant membranes, and thus investigate the roles of the phospholipid head groups and the lipid acyl chains sys...
متن کاملInsights from biophysical studies on the role of polyunsaturated fatty acids for function of G-protein coupled membrane receptors.
The composition of the lipid matrix is critical for function of membrane proteins. Perhaps one of the best studied examples is the function of the G-protein-coupled membrane receptor (GPCR) rhodopsin which is located in membranes with high content of phospholipids with polyunsaturated docosahexaenoic acid chains (DHA, 22:6n-3). Technological advances enabled a more detailed study of structure a...
متن کاملCell cycle dependent changes in membrane stored curvature elastic energy: evidence from lipidomic studies.
One of the most developed theories of phospholipid homeostasis is the intrinsic curvature hypothesis, which, in broad terms, postulates that cells regulate their lipid composition so as to keep constant the membrane stored curvature elastic energy. The implication of this hypothesis is that lipid composition is determined by a ratio control function consisting of the weighted sum of concentrati...
متن کاملLateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes.
Lipid-protein interactions are an important determinant of the stability and function of integral and transmembrane proteins. In addition to local interactions at the lipid-protein interface, global interactions such as the distribution of internal lateral pressure may also influence protein conformation. It is shown here that the effects of the membrane lateral pressure profile on the conforma...
متن کاملConstitutive Model for Multi-laminate Induced Anisotropic Double Hardening Elastic-plasticity of Sand
A constitutive multi-laminate based elastic-plastic model developed to be capable of accounting induced anisotropic behavior of granular material such as sand. The fabric feature or grain orientation characteristic effects through medium are considered in a rational way under any complex stress path, including cyclic loading. The salient feature of the developed model is a non-associative on pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 99 3 شماره
صفحات -
تاریخ انتشار 2010